ag88环亚,环亚国际ag886,环亚平台,环亚在线
ag88环亚热线
公司公告
您当前的位置:主页 > 公司公告 >

环亚国际ag8862018年MLAI重大进展有哪些?LeCun推荐了这篇回答

来源:http://www.ssjiaj.com 责任编辑:ag88环亚 2019-01-20 10:59

  这一年都有哪些重要进展呢?2018年即将过去,一些大牛也给出了自己的看法。

  答案发布之后,便引发了大量围观,Quora上点赞近400,Yann LeCun也在Twitter上转发推荐。

  2017年,是AI炒作无所不在的一年。最突出的,就是马斯克和扎克伯格等各方大佬就AI对于人类是福是祸进行了隔空论战。这些论战为AI赚足了注意力。

  Amatriain表示,与2017年相比,我们好像冷静下来了。一个主要的原因可能是这些大佬们忙于处理其他事情了。

  比如Facebook深陷数据与隐私旋涡,麻烦事情不断。马斯克也历经特斯拉生产地狱,度过了艰难的一年。

  与此同时,虽然很多人都认为自动驾驶以及类似的技术正在向前发展,但就目前事故不断的情况,所谓的“明天”,还有很远。

  首先是公平性。2018年,对公平性的讨论,并不仅仅限于发表一些论文或者言论。谷歌还上线了相应的课程。

  其次是可解释性和因果关系。因果关系之所以重新成为了人们关注的焦点,主要是因为图灵奖得主、贝叶斯网络之父Judea Pearl出版了《The Book of Why》一书,在Twitter上引发了关于因果关系的大讨论。

  而且,ACM Recsys上获得最佳论文奖的论文,也探讨了如何在嵌入中包含因果关系的问题。

  讨论也不仅仅限于学界,大众媒体《大西洋月刊》也发表文章指出,这是对现有人工智能方法的“挑战”。

  虽然因果关系引发了不少的讨论,但也有许多学者认为,从某种程度上来说, 因果关系其实分散了人们对理论的关注,应该关注更加具体的问题,比如模型的可解释性。

  其中最具代表性的,就是华盛顿大学Marco Tulio Ribeiro等人发表的论文,这篇论文是对著名的LIME(一种解释任何机器学习分类器的预测的技术)模型的跟进。

  2018年,深度学习依旧受到了质疑。CMU学者Simon DeDeo在Twitter上猛烈炮轰Google Brain团队,称这技术(机器学习)现在所做的事情,跟1990年没什么差别,顶多就是规模更大,但并没有给我们带来比20年前更深刻的见解。

  Amatriain说,深度学习等技术并没有止步不前,还有很多领域没有运用相关的技术。具体来说,深度学习在计算机视觉之外的领域取得了前所未有的成功。

  最为突出的就是NLP领域。谷歌的Smart Compose(Gmail中智能预测拼写神经网络)和Duplex对话系统(会打电线年最令人印象深刻的两个AI应用了。

  NLP领域的进展,也不仅仅只体现在应用上。在语言模型上也有了很大的进步。最大的功臣是Fast.ai的UMLFit,推广了相关的概念与想法。

  然后是其他的方法,比如艾伦研究所的ELMo、OpenAI的Transformers、谷歌最近的BERT等等,都取得了非常好的效果。

  它们提供了即用型的预训练和通用模型,可以针对特定任务微调。因此,这些模型的出现,也被描述为“NLP的Imagenet时刻”。

  除了这些之外,还有其他一些进步,比如Facebook的多语言嵌入。而且,我们也看到了这些方法被整合到通用的NLP框架中的速度变得非常快了,比如AllenNLP或Zalando的FLAIR。

  虽然在生产的过程中使用Pytorch仍旧不太理想,但在可行性、环亚国际ag886。文档和教育方面,Pytorch已经超过了TensorFlow。

  这其中,选择Pytorch作为实现Pytorch库的框架可能起到了很大的作用。

  谷歌也已经意识到了这一点,也正在朝着这个方向努力,将Keras纳入框架,并吸纳Paige Bailey这样的开发者领袖加入其中。

  虽然今年强化学习领域的进展比不上前些年,只有DeepMind最近的IMPALA还算令人印象深刻。但基本上AI领域所有的“玩家”都发布了强化学习框架。

  谷歌发布了Dopamine框架,DeepMind发布了有点竞争性的TRFL,Facebook当然不会落后,发布了Horizon,微软则发布了TextWorld,专门用于训练基于文本的智能体。

  此外,框架方面还有一个有趣的进展。谷歌最近发布了基于TensorFlow的TFRank。排序是一个非常重要的ML应用,它应该得到更多的关注。

  比如说,对于深度学习非常关键的数据扩充(data augmentation)在今年有了新的进展。谷歌发布了auto-augment,一种深度强化学习方法,可以自动扩充训练数据。

  一个更加极端想法是用合成数据训练深度学习模型,许多人都认为这是AI未来发展的关键。英伟达在《Training Deep Learning with Synthetic Data》论文中提出了一些新的想法。

  最后,还有一种方法是“weak supervision”,可以减少对大量手工标注数据的需求。Snorkel是一个非常有趣的项目,想要提供了一个通用的框架,来推进这种方法。

  但他不同意Hinton的看法,即认为缺乏创新是因为这个领域年轻人太多,资深的人太少。

  在他看来,缺乏突破的主要原因是,现有的方法仍旧有许多地方可以应用,因此很少有人去冒险近尝试不切实际的想法。尤其是当前大多数研究都是由大公司资助的,让这一特点更加突出了。

公司公告
最新动态
联系我们
      • 地 址:环亚国际ag886有限责任公司
      • 电 话:
      • 邮 箱:

Copyright © 2013 ag88环亚,环亚国际ag886,环亚平台,环亚在线 All Rights Reserved 网站地图

扫描二维码快捷登陆网站
在线客服
  • 点击这里给我发消息
  • 点击这里给我发消息